Propagation characteristics of partial discharge signals in medium voltage branched cable joints using HFCT sensors

Available in open access here: https://www.cired-repository.org/handle/20.500.12455/388

Muhammad SHAFIQ (1), Guillermo ROBLES (2), Kimmo KAUHANIEMI (2), Brian STEWART (3), Matti Lehtonen (4). Propagation characteristics of partial discharge signals in medium voltage branched cable joints using HFCT sensors. 3 – 6 June 2019, 25th international conference and exhibition on electricity distribution (CIRED 2019). Madrid – Spain

(1) University of Vaasa – Finland

(2) Carlos III University of Madrid – Spain

(3) University of Strathclyde – UK

(4) Aalto University – Finland

Abstract—Rapid proliferation of underground cables in today’s distribution networks need improved fault monitoring and diagnostic capabilities. Dielectric insulation is the most critical element of underground cables and exposed to various stresses. Cable joints and terminations are always needed and are the most vulnerable locations for insulation defects within the cable feeder. Partial discharge (PD) signals emerging during the progression of insulation faults, travel along the lines and split into connected branches at the T/Y splices. This makes the use of conventional diagnostics solution inappropriate as compared to straight cable section. This paper presents a study on the propagation behaviour of PD signals in a branched joint configuration. Experimental investigations are presented to study the PD propagation across the T/Y-splices. The presented study provides interesting outcomes that can be used for development of an efficient PD monitoring system to watchdog the cable feeder.

Keywords— Power cables, Partial discharges, Signal Propagation, Transmission lines.

 

Multiple Partial Discharge Source Localization in Power Cables Through Power Spectral Separation and Time-Domain Reflectometry

G. Robles, M. Shafiq and J. M. Martínez-Tarifa, “Multiple Partial Discharge Source Localization in Power Cables Through Power Spectral Separation and Time-Domain Reflectometry,” in IEEE Transactions on Instrumentation and Measurement. doi: 10.1109/TIM.2019.2896553

Open access post-print version (ie final draft post-refereeing) available (Copyright 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works).

Early access available at http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8653470&isnumber=4407674

https://doi.org/10.1109/TIM.2019.2896553

 

Abstract— Insulated power cables are becoming increasingly popular in today’s developing distribution and transportion networks. However, due to aging, deterioration, and various operational and environmental stresses, insulation defects may appear and so the cable needs to be monitored in a timely manner to avoid unexpected failures. Many of these defects are responsible for partial discharge (PD) activity. The localization of the sources of these discharges is a highly decisive facet in the condition-based monitoring of power cables. The techniques for the localization of single-PD defects in insulated power cables are well presented in the current bibliography. However, when several simultaneous PD sources are active, the localization of the sources becomes quite complex. This paper develops an efficient technique for the separation and localization of multiple PD sources in a medium voltage cable. The experimental results are obtained with single-end-based measurements using a high-frequency current transformer in a laboratory environment. The data processing based on the spectral characteristics of the signals is carried out by using the power ratios technique in order to determine the presence of different types of PD. Once the signals are separated, the PD sources can be localized with an individualized analysis of each source through time-domain reflectometry. The proposed methodology can be very valuable to improve the location diagnostic capability of the condition-based monitoring solutions, especially for underground cables.

Keywords— Condition monitoring; partial discharges (PDs); particle swarm optimization (PSO); power cables; signal characterization; signal propagation; spectral power ratios (PRs); time-domain reflectometry (TDR).

Partial Discharge Signal Propagation in Medium Voltage Branched Cable Feeder

M. Shafiq, K. Kauhaniemi, G. Robles, G. A. Hussain and L. Kumpulainen, “Partial discharge signal propagation in medium voltage branched cable feeder,” in IEEE Electrical Insulation Magazine, vol. 34, no. 6, pp. 18-29, November-December 2018.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8507714&isnumber=8507707

doi: 10.1109/MEI.2018.8507714

Abstract— Rising global and regional electricity use is accelerating the need to upgrade networks. The adoption of sustainable ways of energy generation (renewables energy resources) is the top priority of today’s grid, and these resources are predominantly embedded within the distribution networks that are mostly connected by medium voltage (MV) cables. Driven by urbanization trends, negative land value impacts, public safety, environmental aesthetics, and network reliability, the resistance to overhead lines in distribution networks is gradually increasing in many countries. Either choosing the proactive path considering the operational superiority of underground cables compared with overhead lines or following the ongoing legislative policies, the use of cables has been increasing rapidly over the past 30 years. This trend is likely to accelerate.

Keywords— Power cables; Partial discharges; Power cable insulation; Cable shielding; Current measurement; Voltage measurement; Medium voltage; Condition monitoring; Cables; Branch; Joint; Diagnostic; Sensor},