The influence of antenna positioning errors on the radio-frequency localization of partial discharges sources

Open access: http://www.mdpi.com/2504-3900/1/2/12/

Fresno, J.; Robles, G.; Stewart, B.; Martinez-Tarifa, J. The influence of antenna positioning errors on the radio-frequency localization of partial discharges sources. In Proceedings of the 3rd Int. Electron. Conf. Sens. Appl., 15–30 November 2016; Sciforum Electronic Conference Series, Vol. 3, 2016 , E003; doi:10.3390/ecsa-3-E003

Abstract—Electrical insulation can have imperfections due to manufacturing or ageing. When the insulation is electrically stressed, discharges may happen in these inhomogeneous imperfect locations resulting in partial discharge (PD) which have very fast rise times and short time durations. Since charges are accelerated within PD activity, radiated electromagnetic energy across a wide bandwidth of frequencies can occur. The measurement of the radiated PD energy is widely employed to identify defective insulation within high voltage equipment. Based on assessment of the strength and nature of the emitted PD signals, determination is made to carry out predictive maintenance in order to prevent equipment breakdown. The location of emitted radiated PD signals may be determined using multi-lateration techniques using an array of at least 4 antennas. Depending on the relative position between the antennas and the PD source, the radiated emissions from the PD source arrive at each antenna at different times. The relative time differences of arrivals (TDOA) together with the antennas position are variables used to locate the PD source in 3D space. The effect on the location error of a PD source using TDOA calculations based on acquisition sample time errors is a topic which has previously been studied (see bibliography). This paper now investigates the accuracy on PD location as a consequence of error on the measured positions of the antennas. This paper evaluates the influence of positional antenna error on the possible accuracy of the localization of the PD source. This error is analyzed for 3 different antenna array layouts and for different vector directions from the arrays. Additionally, the least sensitive layout with regard to positioning errors is proposed to assist in improving the location accuracy of PD sources.

Keywords—Radio-Frequency Localization; Partial Discharges; Antennas Positioning; Measurement Error.