Designing a Rogowski coil with particle swarm optimization

Guillermo Robles; Muhammad Shafiq; Juan Manuel Martínez-Tarifa, Designing a Rogowski coil with particle swarm optimization, November 2018, Proceedings of the 5th International Electronic Conference on Sensors and Applications session Physical Sensors (doi: 10.3390/ecsa-5-05721)

Open access at https://sciforum.net/paper/view/conference/5721

Abstract—Rogowski coils are inductive sensors based on Faraday’s and Ampère’s Laws to measure currents through conductors without galvanic contact. The main advantage of Rogowski coils when compared with current transformers is the fact that the core is air so they never saturate and the upper cut-off current can be higher. These characteristics makes Rogowski coils ideal candidates to measure high amplitude pulsed currents. On the contrary, there are two main drawbacks. On the one hand, the output voltage is the derivative of the primary current so it has to be integrated to measure the original signal; and, on the other hand, the transfer function is resonant due to the capacitance and the self-inductance of the coil. The solution is the use of a passive integration with a terminating resistor at the output of the sensor that splits the two complex poles and gives a constant transfer function for a determined bandwidth. The downside is a loss of sensitivity. Since it is possible to calculate the electrical parameters of the coil based on its geometrical dimensions, the geometry can be  adapted to design sensors for different applications depending on the time characteristics of the input current. This paper proposes the design of Rogowski coils based on their geometric characteristics maximizing the gain-bandwidth product using particle swarm optimization and adapting the coil to the specific requirements of the application.

Keywords—Rogowski coils; particle swarm optimization; gain-bandwidth product; current
measurement; magnetic field measurement.